Study on Thickness of Two-way Slab by Artificial Neural Network

نویسندگان

  • J. B. Alam
  • C. K. Sarkar
چکیده

In this paper, an attempt has been taken to find out optimum thickness of edge-supported slabs. To arrive at optimum solution using artificial neural network based on back-propagation network, a number of architectures such as 5-15-25-35-45-55-5; 5-25-35-45-55-65-85-105-5 and 5-35-45-65-75-85-5 with different number of hidden layers and hidden nodes or neuron were tried. Among them, 5-25-35-45-55-65-85-105-5 is found to have the least errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREDICTION OF LOAD DEFLECTION BEHAVIOUR OF TWO WAY RC SLAB USING NEURAL NETWORK APPROACH

Reinforced concrete (RC) slabs exhibit complexities in their structural behavior under load due to the composite nature of the material and the multitude and variety of factors that affect such behavior. Current methods for determining the load-deflection behavior of reinforced concrete slabs are limited in scope and are mostly dependable on the results of experimental tests. In this study, an ...

متن کامل

Car paint thickness control using artificial neural network and regression method

Struggling in world's competitive markets, industries are attempting to upgrade their technologies aiming at improving the quality and minimizing the waste and cutting the price. Industry tries to develop their technology in order to improve quality via proactive quality control. This paper studies the possible paint quality in order to reduce the defects through neural network techniques in au...

متن کامل

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

Estimation of bremsstrahlung photon fluence from aluminum by artificial neural network

Background: As bremsstrahlung photon beam fluence is important parameter to be known in a photonuclear reaction experiment as the number of produced particle is strongly depends on photon fluence. Materials and Methods: Photon production yield from different thickness of aluminum target has been estimated using artificial neural network (ANN) model. Target thickness and incoming electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007